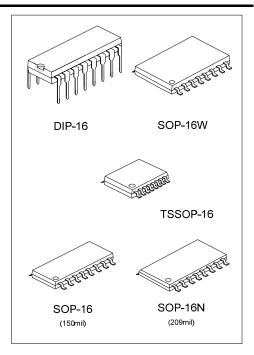
UNISONIC TECHNOLOGIES CO., LTD

U3525

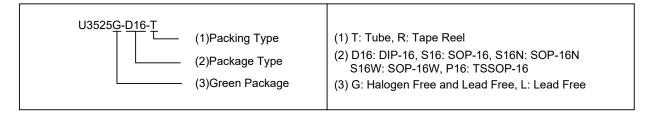

LINEAR INTEGRATED CIRCUIT

REGULATING PWM IC

DESCRIPTION

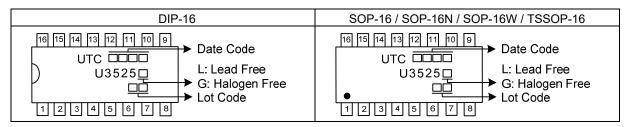
The UTC **U3525** is a pulse width modulator IC and designed for switching power supplies application to improve performance and reduce external parts usage.

A shutdown terminal controls both the soft-start circuitry and the output stages, providing instantaneous turn off through the PWM latch with pulsed shutdown, as well as soft-start recycle with longer shutdown commands. The output stage features NOR logic, giving a LOW output for an OFF state. An under-voltage lockout circuitry, which keeps the outputs off and the soft-start capacitor discharged for sub-normal input voltages, includes approximately 500 mV of hysteresis for jitter free operation. The PWM circuits also feature a latch following the comparator. When a PWM pulses has been terminated, the outputs will remain off for the duration of the period. The latch is reset with each clock pulse. The output stages are totem-pole designs capable of sourcing or sinking in excess of 200mA.

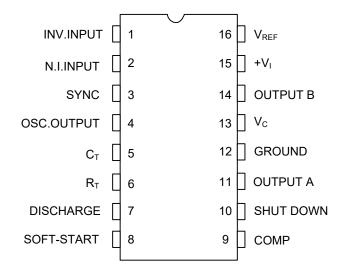


■ FEATURES

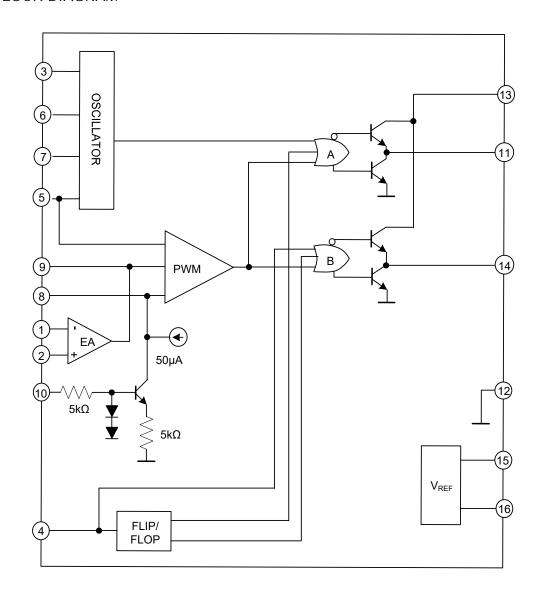
- * Input Voltage: 8~35V
- * On-chip +5.1V reference is trimmed to ±1%
- * 100HZ ~ 400KHZ oscillator range
- * Separate oscillator sync terminal
- * Adjustable dead time control
- * Internal soft-start
- * Pulse-by-pulse shutdown
- * Input under-voltage lockout with hysteresis
- * Latching PWM to prevent multiple pulses
- * Dual source/sink output drivers


ORDERING INFORMATION

Ordering Number		Daakana	Daakina	
Lead Free	Halogen Free	Package	Packing	
U3525L-D16-T	U3525G-D16-T	DIP-16	Tube	
U3525L-S16-R	U3525G-S16-R	SOP-16	Tape Reel	
U3525L-S16N-R	U3525G-S16N-R	SOP-16N	Tape Reel	
U3525L-S16W-R	U3525G-S16W-R	SOP-16W	Tape Reel	
U3525L-P16-R	U3525G-P16-R	TSSOP-16	Tape Reel	



www.unisonic.com.tw 10f 10


MARKING

■ PIN CONNECTIONS (top view)

■ BLOCK DIAGRAM

■ ABSOLUATE MAXIUM RATINGS

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V_{iN}	40	V
Collector Supply Voltage	Vc	40	V
Oscillator Charging Current	losc	5	mA
Output Current, Source or Sink	lo	500	mA
Reference Output Current	I _R	50	mA
Current through C _T Terminal		5	mA
Logic Inputs	Ι _Τ	- 0.3 ~ + 5.5	V
Analog Inputs		-0.3 ~ Vi	V
Total Power Dissipation	P_D	1000	mW
Junction Temperature	TJ	-55 ~ +125	°C
Operating Ambient Temperature	T _{ORP}	0 ~ +70	°C
Storage Temperature	T _{STG}	-65 ~ +150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ RECOMMENDED OPERATING CONDITIONS (NOTE)

PARAMETER	SYMBOL	RATINGS	UNIT
Input Voltage	V _{IN}	8 ~ 35	V
Collector Supply Voltage	Vc	4.5 ~ 35	V
Sink/Source Load Current (Steady State)	ISTEAD	0 ~ 100	mA
Sink/Source Load Current (Peak)	IPEAK	0 ~ 400	mA
Reference Load Current	ILOAD	0 ~ 20	mA
Oscillator Frequency Range	Fo	100 ~ 400K	Hz
Oscillator Timing Resistor	Ro	2 ~ 150	ΚΩ
Oscillator Timing Capacitor	Co	0.001 ~ 0.1	μF
Dead Time Resistor Range	R⊤	0 ~ 500	Ω

Note: Range over which the device is functional and parameter limits are guaranteed.

■ THERMAL DATA

PARAMETER		SYMBOL	RATING	UNIT
Thermal Resistance Junction-Ambient	DIP16		80	°C/W
	SOP-16			
	SOP-16W	θ_{JA}	400	°C // //
	SOP-16N		100	°C/W
	TSSOP-16			

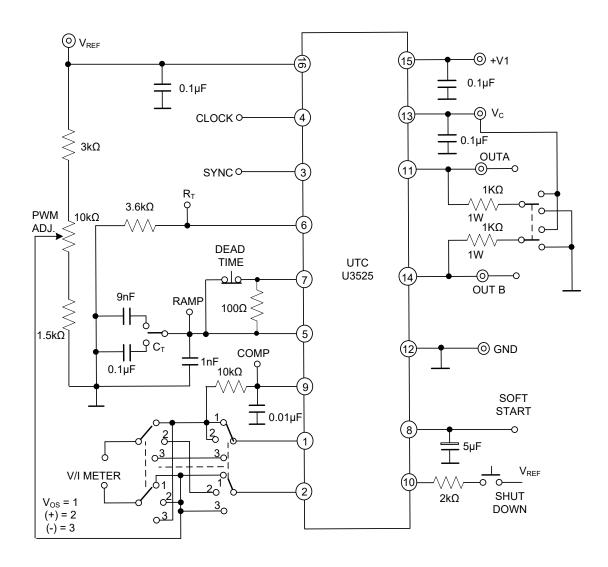
Note: Thermal resistance junction-alumina with the device soldered on the middle of an alumina supporting substrate measuring 15×20 mm; 0.65 mm thickness with infinite heat sink.

■ ELECTRICAL CHARACTERISTICS (V_{IN}= 25V, unless otherwise specified)

SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
REFERENCE SECTION							
V_{REF}	T _J = 25°C	5	5.1	5.2	V		
	Line, Load and Temperature	4.95		5.25	V		
$\triangle V_{REF}$	T _J = 125°C, 1000 hrs		20	50	mV		
$\triangle V_{REF}$	V _{IN} = 8 ~ 35 V		10	20	mV		
$\triangle V_{REF}$	I _L = 0 ~ 20 mA		20	50	mV		
$\triangle V_{REF}/\triangle T$	Over Operating Range		20	50	mV		
	10 Hz ≤ f ≤ 10 kHz, T _J = 25°C		40	200	μVrms		
	V _{REF} = 0, T _J = 25°C		80	100	mA		
		3	3.5		V		
		1.2	2	2.8	V		
	Sync Voltage = 3.5 V		1	2.5	mA		
	I _{RT} = 2 mA	1.7	2	2.2	mA		
f _{MAX}	$R_T = 2 K\Omega, C_T = 0.001 \mu F$	400			KHz		
f _{MIN}	$R_T = 150K\Omega$, $C_T = 0.1\mu F$			100	Hz		
	T _J = 25°C	0.3	0.5	1	μs		
	T _J = 25°C		±2	±6	%		
	V _{IN} = 8 ~ 35 V		±1	±2	%		
$\triangle f / \triangle T$	Over Operating Range		±3	±6	%		
= 5.1V)							
			0.2	0.5	V		
		3.8	5.6		V		
Vos			2	10	mV		
lb			1	10	μA		
los				1	μΑ		
CMR	V _{CM} = 1.5 ~ 5.2 V	60	75		dB		
PSR	V _{IN} = 8 ~ 35 V	50	60		dB		
	R _L ≥10 MΩ	60	75		dB		
	30 KΩ ≤R∟≤1 MΩ, T _J = 25°C	1.1	1.5		ms		
	Gv = 0 dB, T _J = 25°C	1	2		MHz		
		_	_	_	_		
	Zero Duty-cycle	0.7	0.9		V		
			3.3	3.6	V		
			0.05	1	μΑ		
				0	%		
		45	49		%		
	V _{SD} = 2.5 V		0.4	0.7	V		
	To outputs, $V_{SS} = 5.1 \text{ V}$, $T_J = 25^{\circ}\text{C}$	0.6	0.8	1	V		
	V _{SD} = 2.5 V		0.4	1	mA		
	V _{SD} = 0 V, V _{SS} = 0 V	25	50	80	μΑ		
	V _{SD} = 2.5 V, T _J = 25°C		0.2	0.5	μs		
	VREF	$V_{REF} \qquad T_{J} = 25^{\circ}C$ $Line, Load and Temperature$ $\triangle V_{REF} \qquad T_{J} = 125^{\circ}C, 1000 \text{ hrs}$ $\triangle V_{REF} \qquad V_{IN} = 8 \sim 35 \text{ V}$ $\triangle V_{REF} \qquad I_{L} = 0 \sim 20 \text{ mA}$ $\triangle V_{REF}/\triangle T \qquad Over Operating Range$ $10 \text{ Hz} \leq f \leq 10 \text{ kHz}, T_{J} = 25^{\circ}C$ $V_{REF} = 0, T_{J} = 25^{\circ}C$ $V_{REF} = 0, T_{J} = 25^{\circ}C$ $V_{REF} = 0 \text{ Tolow}$ $Sync \text{ Voltage} = 3.5 \text{ V}$ $I_{RT} = 2 \text{ mA}$ $f_{MAX} \qquad R_{T} = 2 \text{ K}\Omega, C_{T} = 0.001 \mu\text{F}$ $T_{J} = 25^{\circ}C$ $T_{J} = 25^{\circ}C$ $V_{IN} = 8 \sim 35 \text{ V}$ $\triangle f/\triangle T \qquad Over Operating Range$ $= 5.1V)$ V_{OS} I_{b} I_{OS} $CMR \qquad V_{CM} = 1.5 \sim 5.2 \text{ V}$ $PSR \qquad V_{IN} = 8 \sim 35 \text{ V}$ $R_{L} \geq 10 \text{ M}\Omega$ $30 \text{ K}\Omega \leq R_{L} \leq 1 \text{ M}\Omega, T_{J} = 25^{\circ}C$ $Gv = 0 \text{ dB, } T_{J} = 25^{\circ}C$ $Zero \text{ Duty-cycle}$ $Maximum \text{ Duty-cycle}$ $Maximum \text{ Duty-cycle}$ $V_{SD} = 2.5 \text{ V}$ $V_{SD} = 2.5 \text{ V}$ $V_{SD} = 0 \text{ V, Vss} = 0 \text{ V}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		

■ ELECTRICAL CHARACTERISTICS (Cont.)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OUTPUT DRIVERS (each output) (V _c = 20V)						
Output Low Level		I _{SINK} = 20 mA		0.2	0.4	V
		I _{SINK} = 100 mA		1	2	V
Output High Level		I _{SOURCE} = 20 mA	18	19		V
		I _{SOURCE} = 100 mA	17	18		V
Under-Voltage Lockout		V _{COMP} and V _{SS} = High	6	7	8	V
Collector Leakage	Ic	V _C = 35 V			200	μΑ
Rise Time (Note 1)	t _R	C _L = 1 nF, T _J = 25°C		100	600	ns
Fall Time (Note 1)	t _F	C _L = 1 nF, T _J = 25°C		50	300	ns
TOTAL STANDBY CURRENT						
Supply Current	Is	V _{IN} = 35 V		14	20	mA


Notes: 1. The parameters are not 100% tested in production.

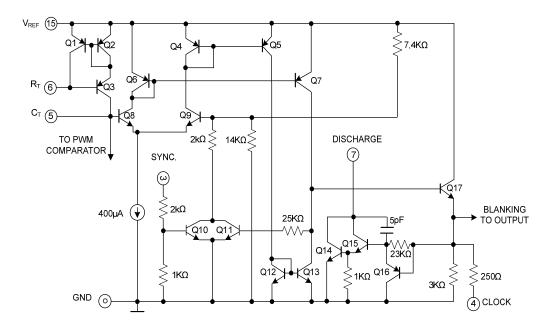
2. Tested at fosc=40 KHz (R_T=3.6 K Ω , C_T=10nF, R_D=0 Ω). Approximate oscillator frequency is defined by :

$$f = \frac{1}{C_T(0.7R_T + 3R_D)}$$

3. DC transconductance (g_M) relates to DC open-loop voltage gain (G_V) according to the following equation: $G_V = g_M R_L$ where R_L is the resistance from pin 9 to ground. The minimum g_M specification is used to calculate minimum G_V when the error amplifier output is loaded.

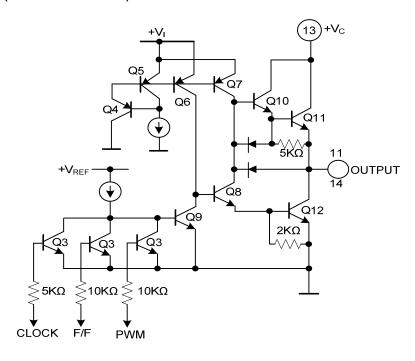
■ TEST CIRCUIT

APPLICATION INFORMATION AND CIRCUIT

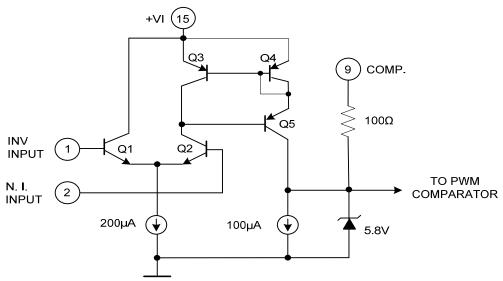

SHUTDOWN OPTIONS (see Block Diagram)

Since both the compensation and soft-start terminals (Pins 9 and 8) have current source pull-ups, either can readily accept a pull-down signal which only has to sink a maximum of 100µA to turn off the outputs. This is subject to the added requirement of discharging whatever external capacitance may be attached to these pins.

An alternate approach is the use of the shutdown circuitry of Pin 10 which has been improved to enhance the available shutdown options. Activating this circuit by applying a positive signal on Pin 10 performs two functions: the PWM latch is immediately set providing the fastest turn-off signal to the outputs; and a 150µA current sink begins to discharge the external soft-start capacitor. If the shutdown command is short, the PWM signal is terminated without significant discharge of the soft-start capacitor, thus, allowing, for example, a convenient implementation of pulse-by-pulse current limiting. Holding Pin 10 high for a longer duration, however, will ultimately discharge this external capacitor, recycling slow turn-on upon release.

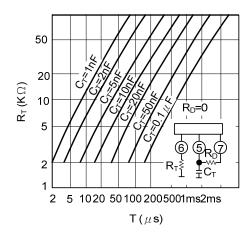

Pin 10 should not be left floating as noise pickup could conceivably interrupt normal operation.

OSCILLATOR SCHEMATIC

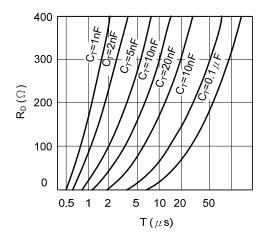


APPLICATION INFORMATION AND CIRCUIT (Cont.)

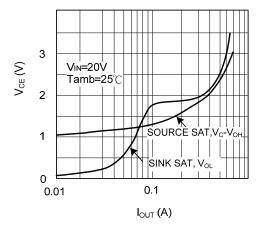
OUTPUT CIRCUIT (1/2 CIRCUIT SHOWN)

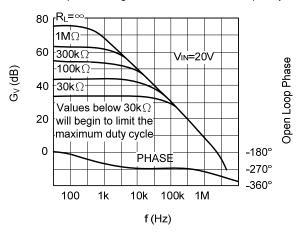


ERROR AMPLIFIER



■ TYPICAL CHARACTERISTICS


Oscillator Charge Time vs. R_T and C_T


Oscillator DisCharge Time vs. R_D and C_T

Output Saturation Characteristics

Error Amplifier Voltage Gain and Phase vs. Frequency

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.